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Long-time self-diffusion coefficients of ferrofluid suspensions are derived from an effective Langevin equa-
tion approach. The dependences of these transport properties on the volume fraction of particles and the
strength of interparticle interaction are investigated. Strong reduction of the rotational and the translational
Brownian motion of the particles is manifested upon increase of particle-particle interaction or ferrofluid
concentration.

DOI: 10.1103/PhysReVvE.68.031202 PACS nuni®er75.50.Mm, 82.70.Dd, 83.80.Gv, 83.10.Pp

I. INTRODUCTION dW(t)
|-
dt

== (Rr WO = V(O +(D) + T(t). ()
This paper is concerned with the transport properties of
magnetic fluids at thermodynamic equilibriupa—4]. The  Vv(t) and W(t) are the linear and angular velocities of the
long-time self-diffusion in ferrofluids is a subject of long tracer whose components are referred to a space fixed frame
standing interesf5]. The long-time self-diffusion manifests with origin at the particle’s center of mass, and frame axis
itself in standard x-ray, neutron, and depolarized light-following the orientation of the tracer’s main axis of symme-
scattering measurements which allow one to detect the trangy. M and| are the mass and particle’s matrix of moment of
lational and rotational diffusion of a particle in a concen-inertia, respectively. We shall not treat the case with added
trated suspensiof6,7]. Ferrofluids are colloidal suspensions hydrodynamic interactions among particles. The diagonal
of magnetic particles dispersed in a host liquid. These comgriction tensors of free particlez®, §$R, ggT, and gg, pro-
plex fluids display important material properties that can bejuce hydrodynamic drag forces and torques linear on the
used as rheological probes to investigate local properties of ge|ocities that couple to the thermally driven solvent random

medium(8]. _ _ forcesf® and torqued® on the tracer. They are related by
Here we provide an approach to derive general expresjyctuation-dissipation theorems

sions of the rotational and translational diffusion coefficients

Dg andD, respectively, in ferrofluids. Since these dynamical(f(t)f°T(0))=kgTz%258(t), (fo(t)t°T(0))=kgT{%:28(1),
properties are dependent on the bulk microstructure of the

suspension, we determined accurately the local structure o{to(t)fo’f(o»:kBngTzﬁ(t), <t°(t)t°T(0)):kBngz(s(t),
the magnetic liquid using both the mean spheriddBA) )
and the linearized hypernetted chdltHNC) liquid theory

approximations. Explicit results are provided illustrating the ~For pairwise interaction energy, the total forég, and
behavior of the rotational diffusion coefficient in the experi- torque T,y on the tracer exerted by the instantaneous local
mentally accessible long-time limit as a function of the par-concentration n(r,Q,t)=3N . 8(r—ri(t))6(Q—Qi(t)) of
ticle’s strength of interaction and concentration. It is shownthe host suspension &f particles are given by

that an increase of interparticle interactions, or concentration,

has the effect of suppressing substantially the rotational _

(translational Brownian movement of the particles. Ftor(t)_f drdQ[V¢(r,@)In(r, 2,0,

Tio(1)= j drdQ[r XV i(r,Q)+Vai(r,Q)In(r,Q,t),

3
The Langevin equations to describe the translational and ©
the rotational Brownian motion of a tracer ferrocolloid par- with Q=(#6,¢) and 6,¢ being the polar angleg(r,Q,Q")
ticle that interacts through an axially symmetric pair poten-the pair potential, and79=ﬁ>< alan the angular gradient
tial with the surrounding particles are given as operator. It is to be noted that the tracer’s dipole is located
along theZ direction of the frame, that i)’ =(0,0). The
unitary Cartesian vectar is in the direction of the particle’s

axis of symmetry.
Both Langevin equations can be written compactly as

Il. THEORY

dv(t
M—d(t - — %V (1) = 9 W() +10(t) + F(1),
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<~ d\7(t) 20 7 €0 Ix(r,r’, 0,971 Jt /f U Te L2" ML o X4
=70, ———=— | dt’ [ dr"dQ"dr"dQ
M- 70Vt +Tot) p .
- XL(r,r',Q,Q";t—t")
+f drdQ[V(r,Q)In(r,Q;t),  (4)
XO’il(r’,r",Q',Q")
where V=(V,V,), the generalized velocity/=(V,W), Xx(r',r”, Q" Q"t"h, 8

M;i=Ms¢; (i,j=1,2,3), M;;=6;l,_5 (i,j=4,56), with e " , . ,

Il,JIZ, anélg being the prinéipallmoments of inertia of the With initial condition (r,r’,Q,Q";t=0)=&(r—r") 5(Q
e < —Q'). This equation can be converted into a dynamical

trgcer.OTheo f”Ct(;O” t(()ens%[ h(;as trg)e nonzero components gquation for the Van Hove function of fluctuations in the

{11=00n=00 {337, {aa={s55={r, and {ge=0. These concentration of particles with respect to the equilibrium

short-time friction components are assumed to be providegg|ye

by experiment or an external theory. Up to first order

in  concentration  fluctuations &n(r,Q;t)=n(r,Q;t) ne%r,Q):C(r,r’,Q,Q":t)

—n®Yr,Q), with n®9(r,Q)=(n(r,Q,t)) the equilibrium en-

semble average, therefore the Langevin equation can be writ-

ten as =f dr"dQ" x(r,r",Q,Q"t)" o(r",r',Q",Q")
- ={on(r’,Q";0)on(r",Q';1)),

- dV(t) <0 & <0 {an( )on( 2
M. ——=—-7"-V(t)+ (1)

dt which determines the relaxation modes of the tracer and of

the cage of particles surrounding it. Its initial condition

+f drdQ[Vy(r,Q)]n(r,Q:t),  (5) =C(_t=0)=<§n(0).5n(.0)> is the iphomogeneous static cor-
relation function with inverse defined through

where n®9(r,Q)) does not contribute to the total force and e , o
torque. A stochastic evolution equation fém(t) is obtained f dr"dQ"e(r,r",Q,Q") " ~(r",r',Q", Q")
from general arguments of linear irreversible theory of fluc-
tuations[ 9] =5(r—=r")o(Q2—Q"). (9
aon(r,Q,t) . . t Substituting the above solution fain(t) in the Langevin
T=[Vneq(r,ﬂ)]-V(t)—jodt’J dr'dQ’ equation leads to
LAV oo
xjdr”dQ”L(r,r’,Q,Q’;t—t’) M'—dt =="-V()+1(1)
X0'71(r,,rH,Q’,Q”)gn(r”,ﬂﬁ;t,) t - - -
—fdt’Ag(t—t’)~V(t’)+F(t), (10
+V-j(r,0;0), (6) °
. . o where
with (V-j(r,Q;t)V-jT(r',Q";0))=L(r,r',Q,Q’;t) and
VH-j(t) a random diffusive flux. Its general solution is given o -
by F(t)=+f drdQ[Vi(r,Q)]
5n(r,Q,t):f dr’dQ’ x(r',Q’:t)én(r,Q;0) Xf dr’dQ’x(r’,Q";t)én(r’,Q";0)
t ’ ’ ! ’. !
+f dt’J dr'dQ’ x(r,r',Q,Q";t—t") +f dr'dQ’x(r,r’,Q,Q%51-t")
0
X[ﬁneq(r/,ﬂl)].\‘?(t/) X[_V J(r 1Q it )]1 (11)
o o, , , ) is a fluctuating generalized force arising from the spontane-
+f0dt fdr dQ’x(r,r’,Q,0"t-t") ous departures from zero of the net direct forces exerted by
the other particles on the tracer. It groups a random force and
X[—?’-j(r’ Q":tH]. ) torque on the tracer with zero mean value and time-
dependent correlation function given byF(t)FT(0))
The collective diffusion propagatoy(t) satisfies =kgTA(t), and the time-dependent friction function is
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- - Using the above approximation for(t) and C=xOao,
Ai(t):—f drdr’dQdQ'[Vg(r,Q)Ix(r,r’,Q,Q;t) Eq. (8) can be written as

X[ﬁrneq(rr’Qr)]' (12) ﬁC(r,Q,Q,,Qr;t):
at

—p[D*°V2+DRVE]
Using Wertheim-Lovett's relatiohl0]
~ xf dt’dr"dQ)”
Vi(r,Q)=— kBTf dr"dQ”e (r,r",Q,0")
X(T_l(r_r”,Q,Q”,Qr_ru)
XCr"—=r",Q", Q" Qun_,;t—1").
(19

x[V"neY(r",Q")], (13)

still another expression for the dynamical friction function
IR - This last equation governs the diffusive relaxation of
A {(t) is obtained, . .
(o C(t), as described from the tracer’s reference frame. In this
manner, we have obtained a closed approximate expression

for AZ(t) in terms of only the static properties o, and of
the phenomenological quantiti@® and D%. This expres-

sion will be used in Sec. IV for the calculation of the diffu-
sion coefficients.

AZ(t)= kBTf drdr'dr’dQdQ’dQ"[Vne%r,Q)]
Xa Y, 0,0 x(r',r",Q",Q"t)

X[V_’Hneq(rn'ﬂu)]
Ill. FERROFLUID MICROSTRUCTURE

=,8f drdr’deQ’[ﬁ/x(r,Q)]C(r,r’,Q,Q’;t) We consider the ferrocolloid to be formed by a homoge-
neous and monodisperse suspension of same-size particles
X[ﬁ’w(r’ Q)] (14) with magnetic moment of strengfta. The pair potential in-

teraction isy(r, 01 ,Q5) =uys— (©?/r3)D(Q4,Q,,9Q,). For
r<d there is a hard core repulsion interactiogg of hard
with B=1/kgT andC= yOo, O=/drdq. sphere(HS) that is radially symmetric an®(Q4,Q,,0Q,)

The time-dependent memory functidry (t) contains the = 3("-N1)(r-nz) —(ny-ny), wherer =|r|, r=r/r is the uni-
dissipative friction effects derived from the direct interac- tary vector with directior(}, andn= u/u is a unitary vector
tions of the tracer with the particles around it. This memorygiving the dipolar onentanorﬂ of a particle.
function defines the relaxation timg> 7z (7 is the relax- Due to the symmetries of the dipole interaction we use
ation time of the momenta of the particldsr the particles Blum’s expansion of functions= ¢, h, or C(t) in rotational
to diffuse a mean distance among them. Thus, in the diffuinvariants with respect to a space fixed frajig],
sive regimet> 7z, long times mean> 7.

This is a general expression for the friction contribution

on the tracer due to direct interactions with the particles , 3 fmnlr) m n |
about it. It depends on the microstructural inhomogeneous f(r,.,0")=(4m) E| \/ﬁ ‘ N

total correlation functionh(r,Q)=n®%r,Q)/p—1 of the e uoh

host suspension df pagticles at concentratiom, and of the XY ()Y, (Q)Y(Q))

free friction constants’® through x(t). We now introduce

the homogeneity approximation which amounts to ignoring => fmnlrypmn! (16)
the tracer’s field on the properties x(t), or equivalently mnl

on C(t), which then can be determined in the bulk solu- i _
tion. Thus, o(r,r',Q,Q")~a(r=|r—r'[,Q,Q’ er o) where we have used thg 3ymbols, andy,, are the spheri-

It as also adopted Fick's diffusion approximation for cal harmonics. We note that in this representation the pair
(D) =exp(-tLOc ), with L(r—r",0,0',0, ) dpole interacton is given as y=uy <000
=p[D*°V2+ D%V 18(r—r')8(Q—Q'). In this approxi- —(u?/r) \/1;0(1)112, where
mationD* =D+ D3, andD°= DX+ DY oiner (the case

. | 1/2
Dyother<DOa v=|l, L, Rwas made in R%fs[ll 12) The =8 (21+1)! L
short-time diffusion coeff|C|entsDOther D% and DR giner ' (2m+1)!1(2n+1)!
= D0 of the other particles are approxmated by those of the
tracer, andD%=kgT/¢° and D3=kgT/{%. For spherical mnl=112, (17

solid particles,;°=6m7d, wheren is the viscosity of the
pure solventd is the diameter of the Brownian particle, and with D= \@@ 12 %=1, Also (n;-n,)=->M1Y3
§%=87-r77d3. =A. For a homogeneous monodisperse dipolar suspension,
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liquid theory allows one to obtaih within MSA, valid at
low concentration or dipole strengft4],

h(r,Ql,Qz,Qr):_l, r<d,

PL

c(r,02,,9,,0,)=—
( 1 2 r) kBTI‘3

D, r=d. (18)

For all r, the direct correlation functiom is related toh
through the Ornstein-Zernik@Z) equation[10]

h(r,Ql,Qz)zc(r,Ql,Qz)erf dr’'dQ’

Xc(r—r",Q4,Q")h(r=r’",Q",Q,).
(19

The solution to this integral equation fbrandc, uses Eq.

(18) and is given in Wertheim’s Cartesian invariant expan-

sion form with respect to a space fixed frame as

h(r,1,95,Q,)=hg(r)+h,(r)A+hp(r)D, (20

wherehg, h,, andhp are known functions given in Ref.

[15]. This expansion is equivalent to Ed.6) when the mini-

mal basis seinnl=000, 110, 11213]. Their relationship is

given by hs=h%° h,=—3h*%and hy=\3/1h**? [16].

At higher values ofp and dipole momenj, one needs to
resort to a more precise solution of the Ornstein-Zernik
equations as that given by the more accurate LHNC approxi=

mation defined agl14]

u
c(r)=h—In(hg+1)— KH?

ca(r)=ha[1-1/(hs+1)],
2

M
- 4
CD(r) kBTr3 bD!

. 3 (r.
=cD(r)—r—3focD(S)szds,

=bp(s)

6D(r)=bD(r)—3f ds,

bp(r)=hp[1-1/(hs+1)], r=d,
hg(r)=-1, r<d,

hp(r)=h,(r)=0,

6D(r)=—3th(s)ds,

R S

r<d,

r<d.

(21)

Using Blum’s expansion and Fourier transfofAppendix
A), the structure factoB=o/p andh are related by

PHYSICAL REVIEW E68, 031202 (2003

o (K)=pSY(K)=p[1+(—=1)*nT(K)], (22
where the definition that transforms quantities to an intermo-
lecular frame was used, where tAexis is along the vector

r joining the centers of two particles,

m+n

m n I
mn _ mnl
fm (k)—IZEm_‘, | (x Yy O)f (k). (23)

With the help of Egs(22), (23), and(B4) we obtain the
structure factor of a hard sphere liquid, and the longitudinal
S(k) and transverss':, (k) structure factors of the dipolar
liquid,

Sy(k)=1+ %hooo( k),
o™
11 6¢( 1 110 2 11 )
k)=1— —| =h"k)— —=h""3k) |,

64

11 —1_ i i
Sii(k)=1 7T(@hﬂo(kw

V30

Units of [h™"(k)]=1/d® and ¢ = 7pd®/6 is the volume
fraction of particles.

We determined with the Ornstein-Zernike equation the
ulk microstructure of the ferrofluid suspension as induced
y the pairwise dipole-dipole interaction for finite size par-
ticles. Figure 1 depicts our numerical solution of the OZ
equation with MSA and LHNC approximations at volume
fraction ¢=0.418 and reduced dipole moment2=0.1.
Figure Xa) is the total correlation functiomg of a hard
sphere liquid *?=0). Its value was determined with the
Verlet-Weiss method that is known to provide good agree-
ment with Monte Carlo simulation§10,14. The contact
value we obtained ibg(d)=5.018.

Figure Xb) gives the components) andh) calculated
with the MSA approximation, and in Fig.(d) the corre-
sponding functionsh; and h obtained using LHNC are
shown. It is apparent from these plots that components of
as obtained from MSA, do not display any oscillation asso-
ciated with a locally structured liquid. However, such oscil-
lations do appear when LHNC was used at the same param-
eter values of u*? and ¢. In this case the latter
approximation provides more accurate componentshlpr
andhg [14]. The propertiesis, h, , andhp provide all the
static information of the dipolar liquid needed for the calcu-
lation of the dynamical friction functionsA{,(t), vy
=1,|.R.

h% k)) . (29

IV. DIFFUSION COEFFICIENTS

The long-time friction coefficient on the tracer particle is
obtained from

AZ= fomthZ(t), (25)
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50 . r . ’ 1.00
4.5
4.0 0.98 1
3.5
C\ 5 (=] x -
=.3.0 0 o096
- o l
2.5
2.0 094+ Pure rotational motion } |
15 (D°=0)
1.
0.92 T T T T T
0.08 0.00 0.02 0.04 2 0.06 0.08 0.10
__0.06+ FIG. 2. Long-time rotational self-diffusion coefficient normal-
\_’Ef ized to its free rotational value vs reduced dipole moment: in MSA
0.041 approximation (upper curve,D*°#0); LHNC (middle curve,
D*%+0), and pure rotational motiofbottom curve D*°=0).
0.02
Ay=3A¢, (29)
o.oo . . . . .

1. are the corresponding contributions from the dipole-dipole
0.35- (c) interactions. They hold also for dipole-monopole charge
0.30- 1 pairwise interactions. However, they are not valid for qua-
0.251] drupolar liquids, in that case one should use the rotational

30 20 invariant expansion witimnl=000,220,222,22414].
< 0'15 In the same manner the long-time rotational friction gives
0.10- 2 48 = j(x)?
<0418, p"=0.1 | Alam s 10 4 y*2 2f LIS
0.05 ¢ B gR 105§R¢(ILL ) B X2—|—3/2
0.00 . v T T T
10 15 20 25 30 35 4.0 X[134ST(x)?+ 76S5(x)?]. (30

r/d

FIG. 1. Total correlation functions fofa) hard spheres. The
same functions a¢a) for dipolar liquids in the MSA(b) and (c)
LHNC approximations.

For pure rotational Brownian motionD(°=0), the
above equation is modified to

96 o
Afr=37elrb(n*?)? f dxja(x)7[67S(x)? + 38SG(x)?].
which is the expression for the friction contribution due to 0
direct particle interactions given in the diffusive regirhe (3D

>, or equivalently in the limitw=0 where we use the  \we may now obtain the long-time self-diffusion coeffi-

Laplace transformed Z(W=0) [16]. Thus, the long-time cients Dy/D3=(1+A§y/§3)_l, (y=, L, R gﬁ’:gﬁ
translational friction readgAppendix B =% and the experimentally observable center of mass dif-
fusion D= (2D, +D|)/3 and rotational diffusion coefficient

AL (w=0)=A7MS+AL, (26 p./pY.

To illustrate the theoretical results presented in this paper

for y=_L.]. where to study long-time diffusion in a Brownian dipolar liquid, we

O (e [S%(x)—1]2 apply this approach to the generic case of rotational Brown-
AHS= '0# (27)  ian movement. In Fig. 2 the calculat® /D is shown as a
36mdJo 1+S5(x) function of dipolar strength at constant volume fraction of

particles using MSA and LHNC approximations. The ob-
is the contribution from the hard sphere core, whereas served differences between the components iof both ap-
. 5 proximations are again manisfested in the pIoiD}f/D%.
A§L29_6§0¢(M*2)2f dx J2(X) The middle curve of Fig. 2 corresponds to the long-time
5 G rotational diffusion of the tracer normalized to its free short-
(28)  time rotational valu?, Eq. (30); here the free short-time
center of mass translational diffusion of each particle is finite
In the case of pure translational Brownian motiopi(  (D*°=2D°%#0). However, wherD*°=0 [particle transla-
=0) the factor in the integrand {+ 3/2) is replaced by tional motion is neglected, E431)], case of pure rotational
1/x?. In any case movement, its effect ODR/D% is to produce a strong reduc-

. 3/2[65}11(x)2+ 9S5(x)?].
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1.00 . : T T APPENDIX A
u*2=0.1 | Using the Fourier f™"(k)=4mi'[gdrr?j,(kr)f™"(r)
0.98+ and Laplacef™(k,w)= [ydt e"'f™"(k,t) transforms and
o i expansion of Eq(16) in Eqg. (15) yield
Do
5l | m n |
(m) [—iwC™(k,w)—C™"(k,0)]
ossl Pure rotational motion™ movoN
(D°=0) -
=4Am(2+1)p2 > X (1t
0.2 " - " " Ny vihg Iohp
0.0 0. .. 0.
¢ 1 |
. _ _ o X[D*%2+DE’m(m+1)]
FIG. 3. Dr/Dg as a function of ferrofluid concentration in N ANy —A

LHNC approximation only(see Sec. Y. Upper curve withD*°

20, " o1, | ( n, n, lLL\fm n I
O 0 0 —V 14 )\2 M Vi )\l
tion of the rotational diffusion, and this effect becomes more ><[afl(k)]m”1'1C“1”'2(k,w), (A1)

important at higher dipole-dipole interactions among par-

ticles, as itis ObSSrYed n the_bottom curve of F'g'_ 2. ) J1(x) being the spherical Bessel function of ordeiUsing
In Fig. 3DR/Dg is plotted in the LHNC approximation

for constant dipole moment as a function of particle volume

fraction ¢. Here again we observe that for pure rotational m n |

diffusion (bottom curvé the ratioDz /D is more suppressed (— 1)m+”+“1[ )

than when short-time translational diffusion is included, povoA

D*%+0 (upper curve Similar conclusions are obtained for mn I;\/n n I

the translational self-diffusion coefficie®®/D° (not de- = (—1)“1”2”1( )( )

picted. From these plots it is concluded that an increase of vihihz move AJimvr v Ry

interparticle strength of interaction among particles, or their

concentration, reduces substantially both the rotational and X

the translational Brownian movement of the ferroparticles.

L 1y |
m n n

o0, |
A2
AN _)\> (A2)

and
V. CONCLUSION

o ) . m n I\m n [
We have presented the derivation of an effective Langevin 2 =(21+1)718,, 6,/

equation for the description of the long-time self-diffusion w lw v Mg v N

coefficients of a tracer particle diffusing in a concentrated (A3)
colloidal s_uspe_nsion of ferro_magneti_c pgrticles. The main res Eq. (A1) yields

sult contained in the Langevin equation is the general expres-

sion for the long-time rotational and translational diffusion o ~mnl _ ~mnl

coefficients Dg and D, respectively, which describe the [=iwCT ok w) = CT(k.0)]

Brownian motion of a particle interacting with the particles =—p4m(21+1)[D* 02+ D’,gom(m+ 1)]

of the host suspension through an axial-symmetric pair po-

tential. We proved these expressions g, using two ap- mentng| 2 T N I O PR
proximate liquid state theories, MSA and LHNC, to take into Xn%z (=1) m n m/l0O 0 O
account the microstructural order present in the bulk suspen-

sion, as induced by the direct interparticle interactions. Im- X[o (k) ]MMaCM2(k, w). (Ad)

portant qualitative differences iBDg (D) are found when

bulk microstructure is calculated using both approximations. Using Eq.(A2) with =, v=—x, A=\"=0, and they
These differences are especially relevant at high strength ¢&presentatiof13,17]

interparticle interaction and concentration, in which case we
also observe that rotational and translational Brownian ng n lyfm n Ii)y/m n |
movements are restrained. 2 _)X( )( )( )

X x —x O0/\x —x O/ix —x O
ACKNOWLEDGMENTS =(—1)mtn+m 2 1o T le 1 (A5)
B m n mjlO0O 0 0
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36557-E Meico and Grant No. ICM-W-35792-E. we get for the equation of the propagator
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[—iwC™"(k,w)—CM"(k,0)]
=—p4m(2l+1)[D*°%k?+ DE’m(m+1)]

X2 (=X C Y (kw)lo T (IT™ . (A6)

For dipolar liquids, correlation§o*1% and[o~ '] "
with x=0,%=1 are forbidder]13]. Therefore, one gets
Ch(k,t=0)
—iw+ p4m(—)X(D*%k?+2DE) [ (k) 1L
(A7)

with y=0,+1, i=\—1, D*°=2D°, andD3°=2D%. We
use this expression fa€ in Appendix B.

11 —
CLik,w)=

APPENDIX B

Taking Laplace transform of Eq14) and Fourier trans-

form of ¢ andC (A7) we get for the rotational friction tensor i

(AZu=Alp=AC,, AZsszAZHa AZ4=Alss, andA L
=0)

AZgi(w)= (z%ﬁf dkdQ;dOQ,[kX Vy+ Vo ]

Xh(K, Q1) C(KQq, Qo W)[kXV+ Vg ]*

Xy* (K, Q). (B1)

The observable\(r=1-A 74 1=} Alss ], WhereVy-i
=(i/2)(L,—L_). Similarly kxV,-i=(i/2)(LX —L¥) and
L.Y{"(0,0)= +\/(I+m)(l+m+1)Ym+1(0,¢) are ladder
operators. For the dipole potential

1 2
/-lz, O )\/

(B2)

———Jg(kd) X

Wk Q) =\m(dm? e o d)3,2 2

X (=1 NYL Q)Y (D),

whereJs, is the half integer Bessel function.
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An analog?ous expansion holds Gk, Q,,0,;w) in
terms ofC™(k,w=0), result which is replaced in E(B1),
and use of Eq(B2), yields after integration o), ,, and

Oy,

64 u’p f L

2 1 \F
— 110 11
. _3c (|<,0)+—35 1 2(k,O)).

(B3)

Then using the relationship betwe&1!® and C*? with
St and Stt, and usingD®/D3=4d?%/3, u*?=Bu?d3 p*

Alg=

=pd?, andc“—a“— pSy,
inf(m,n) m [
c™lk=(21+1) > c”;”(k>< )
x=—im(mn) ' X x O
(B4)
n Eqg. (B3) yield
- 2 12
Adr=R(n*?)%p* f olx—"“(x)3 s
° x| x4
2
1272
+[S5(0)1%.— %{[S?ll(xnz—[s?ol(xnz}) :
(BS)

where x=kd. Finally usingj,(x)=#&/2xJ,, 1AX) Yyields
Eq. (30). With the same methodsZ,,, y=|, L can be ob-

tained. Thus
= 32
AL =(u )Pt f dx—g (8w2{2[8?11(x>]2
° x| xe+2
2
+[Sp(0)]%}— ~[Ss (X)]Z})
(B6)
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