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Transport properties of ferrofluids
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Long-time self-diffusion coefficients of ferrofluid suspensions are derived from an effective Langevin equa-
tion approach. The dependences of these transport properties on the volume fraction of particles and the
strength of interparticle interaction are investigated. Strong reduction of the rotational and the translational
Brownian motion of the particles is manifested upon increase of particle-particle interaction or ferrofluid
concentration.
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I. INTRODUCTION

This paper is concerned with the transport properties
magnetic fluids at thermodynamic equilibrium@1–4#. The
long-time self-diffusion in ferrofluids is a subject of lon
standing interest@5#. The long-time self-diffusion manifest
itself in standard x-ray, neutron, and depolarized lig
scattering measurements which allow one to detect the tr
lational and rotational diffusion of a particle in a conce
trated suspension@6,7#. Ferrofluids are colloidal suspension
of magnetic particles dispersed in a host liquid. These co
plex fluids display important material properties that can
used as rheological probes to investigate local properties
medium@8#.

Here we provide an approach to derive general exp
sions of the rotational and translational diffusion coefficie
DR andD, respectively, in ferrofluids. Since these dynamic
properties are dependent on the bulk microstructure of
suspension, we determined accurately the local structur
the magnetic liquid using both the mean spherical~MSA!
and the linearized hypernetted chain~LHNC! liquid theory
approximations. Explicit results are provided illustrating t
behavior of the rotational diffusion coefficient in the expe
mentally accessible long-time limit as a function of the p
ticle’s strength of interaction and concentration. It is sho
that an increase of interparticle interactions, or concentrat
has the effect of suppressing substantially the rotatio
~translational! Brownian movement of the particles.

II. THEORY

The Langevin equations to describe the translational
the rotational Brownian motion of a tracer ferrocolloid pa
ticle that interacts through an axially symmetric pair pote
tial with the surrounding particles are given as

M
dV~ t !

dt
52z0

•V~ t !2zTR
0
•W~ t !1f0~ t !1Ftot~ t !,
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dW~ t !

dt
52zRT

0
•W~ t !2z0

•V~ t !1t0~ t !1Ttot~ t !. ~1!

V(t) and W(t) are the linear and angular velocities of th
tracer whose components are referred to a space fixed fr
with origin at the particle’s center of mass, and frame a
following the orientation of the tracer’s main axis of symm
try. M andI are the mass and particle’s matrix of moment
inertia, respectively. We shall not treat the case with ad
hydrodynamic interactions among particles. The diago
friction tensors of free particle,z0, zTR

0 , zRT
0 , andzR

0 , pro-
duce hydrodynamic drag forces and torques linear on
velocities that couple to the thermally driven solvent rand
forces f0 and torquest0 on the tracer. They are related b
fluctuation-dissipation theorems

^f0~ t !f0†~0!&5kBTz02d~ t !, ^f0~ t !t0†~0!&5kBTzTR
0 2d~ t !,

^t0~ t !f0†~0!&5kBTzRT
0 2d~ t !, ^t0~ t !t0†~0!&5kBTzR

02d~ t !.

~2!

For pairwise interaction energy, the total forceFtot and
torqueTtot on the tracer exerted by the instantaneous lo
concentration n(r ,V,t)5( i 51

N d(r2r i(t))d(V2V i(t)) of
the host suspension ofN particles are given by

Ftot~ t !5E drdV@“c~r ,V!#n~r ,V,t !,

Ttot~ t !5E drdV@r3“c~r ,V!1“Vc~r ,V!#n~r ,V,t !,

~3!

with V5(u,w) andu,w being the polar angles,c(r ,V,V8)
the pair potential, and“V5n̂3]/]n̂ the angular gradien
operator. It is to be noted that the tracer’s dipole is loca
along theZ direction of the frame, that is,V85(0,0). The
unitary Cartesian vectorn̂ is in the direction of the particle’s
axis of symmetry.

Both Langevin equations can be written compactly as
©2003 The American Physical Society02-1
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MI •

dVI~ t !

dt
52 zJ0

•VI~ t !1 fI0~ t !

1E drdV@“Jc~r ,V!#n~r ,V;t !, ~4!

where “
J5(“,“V), the generalized velocityVI5(V,W),

MI i j 5Md i j ( i , j 51,2,3), MI i j 5d i j I i 23 ( i , j 54,5,6), with
I 1 ,I 2, and I 3 being the principal moments of inertia of th

tracer. The friction tensorzJ0 has the nonzero componen
z11

0 5z22
0 5z'

0 , z33
0 5z i

0 , z44
0 5z55

0 5zR
0 , and z66

0 50. These
short-time friction components are assumed to be provi
by experiment or an external theory. Up to first ord
in concentration fluctuations dn(r ,V;t)5n(r ,V;t)
2neq(r ,V), with neq(r ,V)5^n(r ,V,t)& the equilibrium en-
semble average, therefore the Langevin equation can be
ten as

MI •

dVI~ t !

dt
52 zJ0

•VI~ t !1 fI0~ t !

1E drdV@“Jc~r ,V!#dn~r ,V;t !, ~5!

where neq(r ,V) does not contribute to the total force an
torque. A stochastic evolution equation fordn(t) is obtained
from general arguments of linear irreversible theory of flu
tuations@9#

]dn~r ,V,t !

]t
5@“J neq~r ,V!#•VI~ t !2E

0

t

dt8E dr 8dV8

3E dr 9dV9L~r ,r 8,V,V8;t2t8!

3s21~r 8,r 9,V8,V9!dn~r 9,V9;t8!

1“
J
• j ~r ,V;t !, ~6!

with ^“J • j (r ,V;t)“J • j†(r 8,V8;0)&[L(r ,r 8,V,V8;t) and
“
J
• j (t) a random diffusive flux. Its general solution is give

by

dn~r ,V,t !5E dr 8dV8x~r 8,V8;t !dn~r ,V;0!

1E
0

t

dt8E dr 8dV8x~r ,r 8,V,V8;t2t8!

3@“J neq~r 8,V8!#•VI~ t8!

1E
0

t

dt8E dr 8dV8x~r ,r 8,V,V8;t2t8!

3@2“
J 8• j ~r 8,V8;t8!#. ~7!

The collective diffusion propagatorx(t) satisfies
03120
d
r

rit-

-

]x~r ,r 8,V,V8;t !

]t
52E

0

t

dt8E dr 9dV9dr-dV-

3L~r ,r 8,V,V8;t2t8!

3s21~r 8,r 9,V8,V9!

3x~r 9,r-,V9,V-;t8!, ~8!

with initial condition x(r ,r 8,V,V8;t50)5d(r2r 8)d(V
2V8). This equation can be converted into a dynami
equation for the Van Hove function of fluctuations in th
concentration of particles with respect to the equilibriu
value

neq~r ,V!:C~r ,r 8,V,V8;t !

5E dr 9dV9x~r ,r 9,V,V9;t !9s~r 9,r 8,V9,V8!

[^dn~r 8,V8;0!dn~r 8,V8;t !&,

which determines the relaxation modes of the tracer and
the cage of particles surrounding it. Its initial conditions
5C(t50)5^dn(0)dn(0)& is the inhomogeneous static co
relation function with inverse defined through

E dr 9dV9s~r ,r 9,V,V9!9s21~r 9,r 8,V9,V8!

5d~r2r 8!d~V2V8!. ~9!

Substituting the above solution fordn(t) in the Langevin
equation leads to

MI •

dVI~ t !

dt
52 zJ0

•VI~ t !1 fI0~ t !

2E
0

t

dt8D zJ~ t2t8!•VI~ t8!1FI~ t !, ~10!

where

FI~ t !51E drdV@“Jc~r ,V!#

3E dr 8dV8x~r 8,V8;t !dn~r 8,V8;0!

1E dr 8dV8x~r ,r 8,V,V8;t2t8!

3@2“
J 8• j ~r 8,V8;t8!#, ~11!

is a fluctuating generalized force arising from the sponta
ous departures from zero of the net direct forces exerted
the other particles on the tracer. It groups a random force
torque on the tracer with zero mean value and tim
dependent correlation function given bŷFI(t)FI†(0)&
5kBTD zJ(t), and the time-dependent friction function is
2-2
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D zJ~ t !52E drdr 8dVdV8@“Jc~r ,V!#x~r ,r 8,V,V8;t !

3@“J 8neq~r 8,V8!#. ~12!

Using Wertheim-Lovett’s relation@10#

“
Jc~r ,V!52kBTE dr 9dV9s21~r ,r 9,V,V9!

3@“J 9neq~r 9,V9!#, ~13!

still another expression for the dynamical friction functio

D zJ(t) is obtained,

D zJ~ t !5kBTE drdr 8dr 9dVdV8dV9@“J neq~r ,V!#

3s21~r ,r 8,V,V8!x~r 8,r 9,V8,V9;t !

3@“J 9neq~r 9,V9!#

5bE drdr 8dVdV8@“Jc~r ,V!#C~r ,r 8,V,V8;t !

3@“J 8c~r 8,V8!#, ~14!

with b51/kBT andC5xss, s[*drdV.

The time-dependent memory functionD zJ(t) contains the
dissipative friction effects derived from the direct intera
tions of the tracer with the particles around it. This memo
function defines the relaxation timet I@tB (tB is the relax-
ation time of the momenta of the particles! for the particles
to diffuse a mean distance among them. Thus, in the di
sive regimet@tB , long times meant@t I .

This is a general expression for the friction contributi
on the tracer due to direct interactions with the partic
about it. It depends on the microstructural inhomogene
total correlation functionh(r ,V)5neq(r ,V)/r21 of the
host suspension ofN particles at concentrationr, and of the

free friction constantszJ0 throughx(t). We now introduce
the homogeneity approximation which amounts to ignor
the tracer’s field on the propertiess, x(t), or equivalently
on C(t), which then can be determined in the bulk so
tion. Thus, s(r ,r 8,V,V8)'s(r 5ur2r 8u,V,V8,V ur2r8u).
It as also adopted Fick’s diffusion approximation f
x(t)5exp(2tLss21), with L(r 2r 8,V,V8,V r 2r 8)
5r@D* 0

“

21DR*
0
“V

2 #d(r2r 8)d(V2V8). In this approxi-
mationD* 05D01Dother

0 andDR*
05DR

01DR,other
0 ~the case

Dg,other
0 !Dg

0 , g5i , ', R was made in Refs.@11,12#!. The
short-time diffusion coefficientsDother

0 5D0 and DR,other
0

5DR
0 of the other particles are approximated by those of

tracer, andD05kBT/z0 and DR
05kBT/zR

0 . For spherical
solid particles,z056phd, whereh is the viscosity of the
pure solvent,d is the diameter of the Brownian particle, an
zR

058phd3.
03120
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Using the above approximation forx(t) and C5xss,
Eq. ~8! can be written as

]C~r ,V,V8,V r ;t !

]t
52r@D* 0

“

21DR*
0
“V

2 #

3E dt8dr 9dV9

3s21~r 2r 9,V,V9,V r2r9!

3C~r 92r 8,V9,V8,V r9Àr8 ;t2t8!.

~15!

This last equation governs the diffusive relaxation
C(t), as described from the tracer’s reference frame. In
manner, we have obtained a closed approximate expres

for D zJ(t) in terms of only the static propertiesc, s, and of
the phenomenological quantitiesD0 and DR

0 . This expres-
sion will be used in Sec. IV for the calculation of the diffu
sion coefficients.

III. FERROFLUID MICROSTRUCTURE

We consider the ferrocolloid to be formed by a homog
neous and monodisperse suspension of same-size par
with magnetic moment of strengthm. The pair potential in-
teraction isc(r ,V1 ,V2)5uHS2(m2/r 3)D(V1 ,V2 ,V r). For
r ,d there is a hard core repulsion interactionuHS of hard
sphere~HS! that is radially symmetric andD(V1 ,V2 ,V r)
53(r̂•n̂1)( r̂•n̂2)2(n̂1•n̂2), wherer 5ur u, r̂5r /r is the uni-
tary vector with directionV r andn̂5m/m is a unitary vector
giving the dipolar orientationV of a particle.

Due to the symmetries of the dipole interaction we u
Blum’s expansion of functionsf 5s, h, or C(t) in rotational
invariants with respect to a space fixed frame@13#,

f ~r ,V,V8!5~4p!3/2(
mnl

f mnl~r !

A2l 11
(
mnl

S m n l

m n l
D

3Ymm~V!Ynn~V8!Yll~V r !

5(
mnl

f mnl~r !Fmnl, ~16!

where we have used the 3j symbols, andYll are the spheri-
cal harmonics. We note that in this representation the p
dipole interaction is given as c5uHSF000

2(m2/r 3)A10
3 F112, where

cmnl~r !5d l ,m1nF ~2l 11!!

~2m11!! ~2n11!! G
1/2

mmmn,

mnl5112, ~17!

with D5A10
3 F112, F00051. Also (n1•n2)52F110/A3

[D. For a homogeneous monodisperse dipolar suspens
2-3
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liquid theory allows one to obtainh within MSA, valid at
low concentration or dipole strength@14#,

h~r ,V1 ,V2 ,V r !521, r ,d,

c~r ,V1 ,V2 ,V r !52
m2

kBTr3
D, r ^d. ~18!

For all r, the direct correlation functionc is related toh
through the Ornstein-Zernike~OZ! equation@10#

h~r ,V1 ,V2!5c~r ,V1 ,V2!1rE dr 8dV8

3c~r2r 8,V1 ,V8!h~r2r 8,V8,V2!.

~19!

The solution to this integral equation forh andc, uses Eq.
~18! and is given in Wertheim’s Cartesian invariant expa
sion form with respect to a space fixed frame as

h~r ,V1 ,V2 ,V r !5hs~r !1hD~r !D1hD~r !D, ~20!

where hs , hD , and hD are known functions given in Ref
@15#. This expansion is equivalent to Eq.~16! when the mini-
mal basis setmnl5000, 110, 112@13#. Their relationship is
given by hs5h000, hD52A3h110 and hD5A3/10h112 @16#.
At higher values ofr and dipole momentm, one needs to
resort to a more precise solution of the Ornstein-Zern
equations as that given by the more accurate LHNC appr
mation defined as@14#

cs~r !5hs2 ln~hs11!2
uHS

kBT
,

cD~r !5hD@121/~hs11!#,

cD~r !5
m2

kBTr3
1bD ,

5 ĉD~r !2
3

r 3E0

r

ĉD~s!s2ds,

ĉD~r !5bD~r !23E
r

`bD~s!

s
ds,

bD~r !5hD@121/~hs11!#, r ^d,

hs~r !521, r ,d,

hD~r !5hD~r !50, r ,d,

ĉD~r !523E
R

`hD~s!

s
ds, r ,d. ~21!

Using Blum’s expansion and Fourier transform~Appendix
A!, the structure factorS5s/r andh are related by
03120
-

e
i-

s ,x
mn~k!5rS,x

mn~k!5r@11~21!xh,x
mn~k!#, ~22!

where the definition that transforms quantities to an interm
lecular frame was used, where theZ axis is along the vector
r joining the centers of two particles,

f ,x
mn~k!5 (

l 5um2nu

m1n S m n l

x 2x 0D f mnl~k!. ~23!

With the help of Eqs.~22!, ~23!, and ~B4! we obtain the
structure factor of a hard sphere liquid, and the longitudi
S,0

11(k) and transverseS,61
11 (k) structure factors of the dipola

liquid,

S,0
00~k!511

6f

p
h000~k!,

S,0
11~k!512

6f

p S 1

A3
h110~k!2

2

A30
h112~k!D ,

S,61
11 ~k!512

6f

p S 1

A3
h110~k!1

1

A30
h112~k!D . ~24!

Units of @hmnl(k)#51/d3 and w5prd3/6 is the volume
fraction of particles.

We determined with the Ornstein-Zernike equation t
bulk microstructure of the ferrofluid suspension as induc
by the pairwise dipole-dipole interaction for finite size pa
ticles. Figure 1 depicts our numerical solution of the O
equation with MSA and LHNC approximations at volum
fraction w50.418 and reduced dipole momentm* 250.1.
Figure 1~a! is the total correlation functionhs of a hard
sphere liquid (m* 250). Its value was determined with th
Verlet-Weiss method that is known to provide good agr
ment with Monte Carlo simulations@10,14#. The contact
value we obtained ishs(d)55.018.

Figure 1~b! gives the componentshn
M and hD

M calculated
with the MSA approximation, and in Fig. 1~c! the corre-
sponding functionshn

L and hD
L obtained using LHNC are

shown. It is apparent from these plots that components oh,
as obtained from MSA, do not display any oscillation ass
ciated with a locally structured liquid. However, such osc
lations do appear when LHNC was used at the same par
eter values of m* 2 and w. In this case the latter
approximation provides more accurate components forhn

L

andhD
L @14#. The propertieshs , hn , andhD provide all the

static information of the dipolar liquid needed for the calc
lation of the dynamical friction functionsDzg(t), g
5',i ,R.

IV. DIFFUSION COEFFICIENTS

The long-time friction coefficient on the tracer particle
obtained from

D zJ5E
0

`

dtD zJ~ t !, ~25!
2-4
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which is the expression for the friction contribution due
direct particle interactions given in the diffusive regimet
@t I , or equivalently in the limitw50 where we use the

Laplace transformedD zJ(w50) @16#. Thus, the long-time
translational friction reads~Appendix B!

Dzg~w50!5DzHS1Dzg ~26!

for g5',i , where

DzHS5
z0

36pfE0

`

dx x2
@S,0

00~x!21#2

11S,0
00~x!

~27!

is the contribution from the hard sphere core, whereas

Dz'5
96

5
z0f~m* 2!2E

0

`

dx
j 2~x!2

x213/2
@6S,1

11~x!219S,0
11~x!2#.

~28!

In the case of pure translational Brownian motion (DR*
0

50) the factor in the integrand 1/(x213/2) is replaced by
1/x2. In any case

FIG. 1. Total correlation functions for~a! hard spheres. The
same functions as~a! for dipolar liquids in the MSA~b! and ~c!
LHNC approximations.
03120
Dz i5
4
3 Dz' ~29!

are the corresponding contributions from the dipole-dip
interactions. They hold also for dipole-monopole char
pairwise interactions. However, they are not valid for qu
drupolar liquids, in that case one should use the rotatio
invariant expansion withmnl5000,220,222,224@14#.

In the same manner the long-time rotational friction giv

DzR5
48

105
zR

0f~m* 2!2E
0

`

dx
j 1~x!2

x213/2

3@134S,1
11~x!2176S,0

11~x!2#. ~30!

For pure rotational Brownian motion (D* 050), the
above equation is modified to

DzR5
96

315
zR

0f~m* 2!2E
0

`

dx j1~x!2@67S,1
11~x!2138S,0

11~x!2#.

~31!

We may now obtain the long-time self-diffusion coeffi
cients Dg /Dg

05(11Dzg /zg
0)21, (g5i , ', R, z i

05z'
0

5z0) and the experimentally observable center of mass
fusion D5(2D'1D i)/3 and rotational diffusion coefficien
DR /DR

0 .
To illustrate the theoretical results presented in this pa

to study long-time diffusion in a Brownian dipolar liquid, w
apply this approach to the generic case of rotational Brow
ian movement. In Fig. 2 the calculatedDR /DR

0 is shown as a
function of dipolar strength at constant volume fraction
particles using MSA and LHNC approximations. The o
served differences between the components ofh in both ap-
proximations are again manisfested in the plot ofDR /DR

0 .
The middle curve of Fig. 2 corresponds to the long-tim
rotational diffusion of the tracer normalized to its free sho
time rotational valueDR

0 , Eq. ~30!; here the free short-time
center of mass translational diffusion of each particle is fin
(D* 052D0Þ0). However, whenD* 050 @particle transla-
tional motion is neglected, Eq.~31!#, case of pure rotationa
movement, its effect onDR /DR

0 is to produce a strong reduc

FIG. 2. Long-time rotational self-diffusion coefficient norma
ized to its free rotational value vs reduced dipole moment: in M
approximation ~upper curve, D* 0Þ0); LHNC ~middle curve,
D* 0Þ0), and pure rotational motion~bottom curve,D* 050).
2-5
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tion of the rotational diffusion, and this effect becomes mo
important at higher dipole-dipole interactions among p
ticles, as it is observed in the bottom curve of Fig. 2.

In Fig. 3 DR /DR
0 is plotted in the LHNC approximation

for constant dipole moment as a function of particle volu
fraction w. Here again we observe that for pure rotation
diffusion ~bottom curve! the ratioDR /DR

0 is more suppresse
than when short-time translational diffusion is include
D* 0Þ0 ~upper curve!. Similar conclusions are obtained fo
the translational self-diffusion coefficientD/D0 ~not de-
picted!. From these plots it is concluded that an increase
interparticle strength of interaction among particles, or th
concentration, reduces substantially both the rotational
the translational Brownian movement of the ferroparticle

V. CONCLUSION

We have presented the derivation of an effective Lange
equation for the description of the long-time self-diffusio
coefficients of a tracer particle diffusing in a concentra
colloidal suspension of ferromagnetic particles. The main
sult contained in the Langevin equation is the general exp
sion for the long-time rotational and translational diffusi
coefficients DR and D, respectively, which describe th
Brownian motion of a particle interacting with the particl
of the host suspension through an axial-symmetric pair
tential. We proved these expressions forDR , using two ap-
proximate liquid state theories, MSA and LHNC, to take in
account the microstructural order present in the bulk susp
sion, as induced by the direct interparticle interactions.
portant qualitative differences inDR (D) are found when
bulk microstructure is calculated using both approximatio
These differences are especially relevant at high strengt
interparticle interaction and concentration, in which case
also observe that rotational and translational Brown
movements are restrained.
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FIG. 3. DR /DR
0 as a function of ferrofluid concentration i

LHNC approximation only~see Sec. IV!. Upper curve withD* 0

Þ0.
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APPENDIX A

Using the Fourier f mnl(k)54p i l*0
`dr r 2 j l(kr) f mnl(r )

and Laplacef mn(k,w)5*0
`dt eiwt f mn(k,t) transforms and

expansion of Eq.~16! in Eq. ~15! yield

@2 iwCmnl~k,w!2Cmnl~k,0!#S m n l

m n l
D

54p~2l 11!r(
n1l 1

(
n1l1

(
l 2l2

~21!11n11l11l2

3@D* 0k21DR*
0m~m11!#S l 1 l 2 l

l1 l2 2l
D

3S l 1 l 2 l

0 0 0D S n1 n2 l 2

2n1 n l2
D S m n1 l 1

m n1 l1
D

3@s21~k!#mn1l 1Cn1nl2~k,w!, ~A1!

j l(x) being the spherical Bessel function of orderl. Using
now

~21!m1n1n1H l 2 l 1 l

m n n1
J S m n l

m n l
D

5 (
n1l1l2

~21!l11l21n1S m n1 l 1

m n1 l1
D S n1 n l2

2n1 n l2
D

3S l 1 l 2 l

l1 l2 2l
D ~A2!

and

(
mn

S m n l

m n l
D S m n l8

m n l8
D 5~2l 11!21d l l 8dll8

~A3!

in Eq. ~A1! yields

@2 iwCmnl~k,w!2Cmnl~k,0!#

52r4p~2l 11!@D* 0k21DR*
0m~m11!#

3 (
n1l 1l 2

~21!m1n1n1H l 2 l 1 l

m n n1
J S l 1 l 2 l

0 0 0D
3@s21~k!#mn1l 1Cn1nl2~k,w!. ~A4!

Using Eq.~A2! with m5x, n52x, l5l850, and thex
representation@13,17#

(
x

~2 !xS n1 n l2

x 2x 0 D S m n1 l 1

x 2x 0 D S m n l

x 2x 0D
5~21!m1n1n1H l 2 l 1 l

m n n1
J S l 2 l 1 l

0 0 0D , ~A5!

we get for the equation of the propagator
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@2 iwC,x
mnl~k,w!2C,x

mnl~k,0!#

52r4p~2l 11!@D* 0k21DR*
0m~m11!#

3(
n1

~21!xC,x
n1n

~k,w!@s21~k!# ,x
mn1 . ~A6!

For dipolar liquids, correlations@s21# ,x
01 and @s21# ,x

211

with x50,61 are forbidden@13#. Therefore, one gets

C,x
11~k,w!5

C,x
11~k,t50!

2 iw1r4p~2 !x~D* 0k212DR*
0!@s21~k!# ,x

11
,

~A7!

with x50,61, i 5A21, D* 052D0, andDR*
052DR

0 . We
use this expression forC in Appendix B.

APPENDIX B

Taking Laplace transform of Eq.~14! and Fourier trans-
form of c andC ~A7! we get for the rotational friction tenso

(D zJ115D zJ225D zJ' , D zJ335D zJ i , D zJ445D zJ55, andD zJ66
50)

D zJ44~w!5
b

~2p!3E dkdV1dV2@k3“k1“V1
#

3c~k,V1!C~k,V1 ,V2 ;w!@k3“k1“V2
#*

3c* ~k,V2!. ~B1!

The observableDzR5 î•D zJ44• î5 ĵ•D zJ55• ĵ , where“V• î
5( i /2)(L12L2). Similarly k3“k• î5( i /2)(L1

k 2L2
k ) and

L6Yl
m(u,f)51A( l 7m)( l 6m11)Yl

m61(u,f) are ladder
operators. For the dipole potential

c~k,V1!5Ap~4p!2
m2

~kd!3/2
J3/2~kd! (

m8n8
S 1 1 2

m8 0 l8
D

3~21!m81l8Y1m8 ~V1!Y2l8
8 ~Vk!, ~B2!

whereJ3/2 is the half integer Bessel function.
l
at

.

03120
An analogous expansion holds forC(k,V1,V2 ,Vk ;w) in
terms ofCmnl(k,w50), result which is replaced in Eq.~B1!,
and use of Eq.~B2!, yields after integration onV1 , V2, and
Vk ,

DzR5
64p3m4b

d3 E
0

`

dk
J3/2

2 ~k!

k

3S 2
2

3A3
C110~k,0!1

1

35
A 2

15
C112~k,0!D .

~B3!

Then using the relationship betweenC110 and C112 with
S0

11 and S1
11, and usingD0/DR

054d2/3, m* 25bm2/d3,r*
5rd3, andC,x

115s ,x
115rS,x

11,

Cmnl~k!5~2l 11! (
x52 inf(m,n)

inf(m,n)

C,x
mn~k!S m n l

x 2x 0D ,

~B4!

in Eq. ~B3! yield

DzR5zR
0~m* 2!2r* E

0

`

dx
J3/2

2 ~x!

xS x21
3

2D S 12p2

9
$2@S,1

11~x!#2

1@S,0
11~x!#2%,2

12p2

105
$@S,1

11~x!#22@S,0
11~x!#2% D ,

~B5!

where x5kd. Finally using j n(x)5Ap/2xJn11/2(x) yields
Eq. ~30!. With the same methodsDzg , g5i , ' can be ob-
tained. Thus

Dz'5z0~m* 2!2r* E
0

`

dx
J5/2

2 ~x!

xS x21
3

2D S 8p2$2@S,1
11~x!#2

1@S,0
11~x!#2%2

32p2

5
$@S,1

11~x!#22@S,0
11~x!#2% D .

~B6!
o-
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